Course COMP 4981

Program | Diploma of Technology, Datacommunications & Internetworking

Term

January 2025

This is a pair programming assignment.

Obijective

Develop a comprehensive understanding of network programming by implementing an
advanced multi-process HTTP server using POSIX sockets in C.

The server must use pre-forking, support dynamic updates via shared libraries, and
handle HTTP POST requests with persistent data storage in an ndbm database.

Learning Outcomes

Apply POSIX socket APIs to create high-performance networked applications.
Implement a pre-forking server model to handle concurrent connections efficiently.
Dynamically load and update HTTP handling logic using shared libraries.

Support HTTP POST requests and store data persistently in an ndbm database.
Ensure compatibility across Linux, FreeBSD, and macOS platforms.

Assignment Details

You must develop an HTTP server capable of handling multiple client connections
concurrently using a pre-forked worker model.

The server must dynamically load a shared library for request handling, allowing updates
to be applied without restarting the server.

Additionally, it must support HTTP GET, HEAD, and POST requests, storing data in an
ndbm database.

Requirements

Server Functionality

Accept multiple client connections using TCP sockets.

Handle HTTP GET, HEAD, and POST requests.

Serve requested files from a designated directory for GET and HEAD requests.
Store data from POST requests into an ndbm database.


https://drive.google.com/drive/folders/1fanoQ83UMzvXkM3QQ9kqQgCtxpIvXifO?usp=drive_link

Respond with appropriate HTTP status codes for successful requests, unsupported
methods, and missing files.

The main server process is responsible for closing client connections, not the forked
handlers.

Concurrency & Process Management

Pre-fork a configurable number of worker processes to handle client requests.
Monitor child processes and restart them if they crash.
Ensure proper cleanup of worker processes on shutdown.

Dynamic Library Loading

Implement HTTP request handling in a shared library (.so).
Before serving each client, check if a newer shared library version is available.
If a newer version is found, reload it dynamically using dlsym().

Data Storage with ndbm

Store data received via POST requests in an ndbm database.
Implement a separate program that can query and display stored data.

Error Handling

Implement robust error handling for system calls and memory management.
Ensure the server can recover gracefully from failures.

Compatibility

Ensure your code compiles and runs on Linux, FreeBSD, and macOS.

Constraints

Use only POSIX socket APls and standard C libraries.
Do not use external libraries for networking, concurrency, or HTTP parsing.
Ensure the program works across all specified operating systems.

Resources

Making a simple HTTP webserver in C - bruinsslot.jp
Web server test suite



https://bruinsslot.jp/post/simple-http-webserver-in-c/
https://github.com/init/http-test-suite

Submission

e Ensure your submission meets all the guidelines, including formatting, file type, and
submission.
Follow the Al usage guidelines.
Be aware of the |late submission policy to avoid losing marks.
Note: Please strictly adhere to the submission requirements to ensure you don't
lose any marks.

Evaluation
Topic Value
Design 25
Testing 25
Implementation 50
Total 100%

Hints

Start with a single-process HTTP server handling GET and HEAD requests.
Introduce pre-forking and ensure worker processes handle requests correctly.
Implement dynamic shared library loading to support updates.

Add POST request handling and integrate the ndbm database.

Test thoroughly across Linux, FreeBSD, and macOS.

Use logging to debug and understand server behaviour.


https://drive.google.com/drive/folders/1fanoQ83UMzvXkM3QQ9kqQgCtxpIvXifO?usp=drive_link
https://docs.google.com/document/d/1FetwqOGgXSKXtQ53KS0I9BxGFzRNHT30NguP3FZFkME/edit?usp=sharing
https://docs.google.com/document/d/1v9ydFuprmBuR1IPcEsbnWFrlmKdDBO9crOFZoJ15OR0/edit#heading=h.lw24s0387arh
https://docs.google.com/document/d/1ptY61LNedrhI1Ro2koyI6IDoUJHxCYN9vP6siOvTEjY/edit

	Objective 
	Learning Outcomes 
	Assignment Details 
	Requirements 
	Server Functionality 
	Concurrency & Process Management 
	Dynamic Library Loading 
	Data Storage with ndbm 
	Error Handling 
	Compatibility 

	Constraints 

	Resources 
	Submission 
	Evaluation 
	Hints 

