
 

Course COMP 4981 

Program Diploma of Technology, Datacommunications & Internetworking 

Term January 2025 

 
● This is a pair programming assignment. 

Objective 
● Develop a comprehensive understanding of network programming by implementing an 

advanced multi-process HTTP server using POSIX sockets in C. 
● The server must use pre-forking, support dynamic updates via shared libraries, and 

handle HTTP POST requests with persistent data storage in an ndbm database. 

Learning Outcomes 
● Apply POSIX socket APIs to create high-performance networked applications. 
● Implement a pre-forking server model to handle concurrent connections efficiently. 
● Dynamically load and update HTTP handling logic using shared libraries. 
● Support HTTP POST requests and store data persistently in an ndbm database. 
● Ensure compatibility across Linux, FreeBSD, and macOS platforms. 

Assignment Details 
● You must develop an HTTP server capable of handling multiple client connections 

concurrently using a pre-forked worker model. 
● The server must dynamically load a shared library for request handling, allowing updates 

to be applied without restarting the server. 
● Additionally, it must support HTTP GET, HEAD, and POST requests, storing data in an 

ndbm database. 

Requirements 

Server Functionality 
● Accept multiple client connections using TCP sockets. 
● Handle HTTP GET, HEAD, and POST requests. 
● Serve requested files from a designated directory for GET and HEAD requests. 
● Store data from POST requests into an ndbm database. 

https://drive.google.com/drive/folders/1fanoQ83UMzvXkM3QQ9kqQgCtxpIvXifO?usp=drive_link


● Respond with appropriate HTTP status codes for successful requests, unsupported 
methods, and missing files. 

● The main server process is responsible for closing client connections, not the forked 
handlers. 

Concurrency & Process Management 
● Pre-fork a configurable number of worker processes to handle client requests. 
● Monitor child processes and restart them if they crash. 
● Ensure proper cleanup of worker processes on shutdown. 

Dynamic Library Loading 
● Implement HTTP request handling in a shared library (.so). 
● Before serving each client, check if a newer shared library version is available. 
● If a newer version is found, reload it dynamically using dlsym(). 

Data Storage with ndbm 
● Store data received via POST requests in an ndbm database. 
● Implement a separate program that can query and display stored data. 

Error Handling 
● Implement robust error handling for system calls and memory management. 
● Ensure the server can recover gracefully from failures. 

Compatibility 
● Ensure your code compiles and runs on Linux, FreeBSD, and macOS. 

Constraints 
● Use only POSIX socket APIs and standard C libraries. 
● Do not use external libraries for networking, concurrency, or HTTP parsing. 
● Ensure the program works across all specified operating systems. 

Resources 
● Making a simple HTTP webserver in C - bruinsslot.jp 
● Web server test suite 

https://bruinsslot.jp/post/simple-http-webserver-in-c/
https://github.com/init/http-test-suite


Submission 
● Ensure your submission meets all the guidelines, including formatting, file type, and 

submission. 
● Follow the AI usage guidelines. 
● Be aware of the late submission policy to avoid losing marks. 
● Note: Please strictly adhere to the submission requirements to ensure you don't 

lose any marks. 

Evaluation 
Topic Value 

Design 25 

Testing 25 

Implementation 50 

Total 100% 

Hints 
● Start with a single-process HTTP server handling GET and HEAD requests. 
● Introduce pre-forking and ensure worker processes handle requests correctly. 
● Implement dynamic shared library loading to support updates. 
● Add POST request handling and integrate the ndbm database. 
● Test thoroughly across Linux, FreeBSD, and macOS. 
● Use logging to debug and understand server behaviour. 

 

https://drive.google.com/drive/folders/1fanoQ83UMzvXkM3QQ9kqQgCtxpIvXifO?usp=drive_link
https://docs.google.com/document/d/1FetwqOGgXSKXtQ53KS0I9BxGFzRNHT30NguP3FZFkME/edit?usp=sharing
https://docs.google.com/document/d/1v9ydFuprmBuR1IPcEsbnWFrlmKdDBO9crOFZoJ15OR0/edit#heading=h.lw24s0387arh
https://docs.google.com/document/d/1ptY61LNedrhI1Ro2koyI6IDoUJHxCYN9vP6siOvTEjY/edit

	Objective 
	Learning Outcomes 
	Assignment Details 
	Requirements 
	Server Functionality 
	Concurrency & Process Management 
	Dynamic Library Loading 
	Data Storage with ndbm 
	Error Handling 
	Compatibility 

	Constraints 

	Resources 
	Submission 
	Evaluation 
	Hints 

